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IMAGE RECONSTRUCTION FROM STRONGLY SCATTERING PENETRABLE 
OBJECTS USING A DIFFERENTIAL CEPSTRAL FILTER 

INTRODUCTION 

This report describes an attempt to produce quantitative images of penetrable dielectric 
objects from a limited set of far-field scattered data. The objects considered are strong scatterers, 
deterministic, and confined to a finite support. A single-frequency plane wave is used to excite 
polarization currents within the object which, in turn, generate a scattered field that may be 
collected using a separated receiver (bistatic arrangement). In the regime considered, k0a «1, 
where k0 is the wavenumber of the incident plane wave and a is a characteristic dimension of 
the inhomogeneity. In this regime, diffraction effects of the wavefield must be accounted for. 

Strong scatterers are objects that possess multiple scattering within the object itself. This 
multiple scattering complicates our knowledge of the internal fields, making the direct problem 
of computing the scattered field a difficult one. We backpropagate scattered fields from both 
simulated and measured data and show how the image relates to the desired permittivity 
distribution times the total field. The problem here is that the backpropagated image is disrupted 
by this unwanted multiplicative field factor that cannot be removed through conventional linear 
filtering. We exploit a nonlinear filtering technique known as differential cepstral filtering to 
isolate the desired permittivity distribution from the perturbed backpropagated image of strongly 
scattering objects. In principle, quantitative information on the object's permittivity profile can 
be obtained through a properly calibrated routine. 

This work contrasts with well developed x-ray tomographic techniques [Mueller, et al, 
1979] that use high energy (k0a »1), non-diffracting radiation to produce images. X-rays 
propagate in essentially straight lines so that ray theory may be used to project the object's 
attenuation profile onto an array of detectors. The Fourier transform of these "projections" maps 
onto slices of the two-dimensional Fourier transform of the object (Fourier-slice theorem). 
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Multiple views are then used to "fill up" Fourier space and images may be reconstructed (after 
interpolation) by Fourier inversion [Pan, et al, 1983]. 

Wolf [1969] was the first to show scattered field data mapped onto spectral components 
of the scattering potential for weakly scattering objects. The scattering potential is defined as 

&o("2(r)-l) for a free space background, where n(r) is the object's refractive index. By 
allowing both the transmitter and receiver to vary over [0,2TC] in a bistatic radar configuration, 

Fourier data are collected for those spatial frequencies less than |2fc0|. Image reconstruction by 
Fourier inversion provides a low-pass reconstruction of the scattering potential. 

Weakly scattering approximations such as the first Born approximation (BA) and Rytov 
approximation (RA) linearize the integral equation of scattering, allowing a tractable solution to 
the scattering potential in diffraction tomography (k0a «1 or k0a «1). Devaney [1982] 
introduced a filtered backpropagation algorithm analogous to the filtered backprojection 
algorithm used in transmission tomography. The algorithm operates in the spatial domain and 
accumulates images from many different illumination directions one at a time. This process is 
equivalent to Fourier reconstruction; however, interpolation onto rectangular grids (as in Fourier 
domain reconstruction) is no longer necessary. Merits of the spatial and frequency domain 
approaches have been compared in Pan, et al, [1983]. 

Since the classic paper by Wolf [1969], the BA and the RA have been exploited 
considerably in diffraction tomography. Each approximation involves very different 
assumptions, and therefore the domains of validity must be considered in any application [Fiddy, 
1986], [Lin, et al, 1990]. The BA requires that the phase delay introduced by the object's 
presence be much less than one radian compared to the phase of an undisturbed wave [Slaney, et 
al, 1984]. In contrast, the RA requires that the change in refractive index with respect to distance 
be small, with no restriction placed on the object's size [Tatarski, 1961]. 

In Section 2, we review the scalar Green's function approach to compute the exact 
scattered field from a 2D inhomogeneous region. In Sections 3 and 4, we discuss the weakly 
scattering Born and Rytov approximations, respectively. These approximations have been used 
extensively in media characterization during the last 30 years. 

In Sections 5 and 6, we review the exact computation of the scattered field from 
homogeneous cylinders and two concentric cylinders, respectively. Cylinders are the only 
practical 2D objects for which exact solutions to the scattered fields exist. The scattered fields 
are used to generate simulated data for the differential cepstral processing. Plots of the total field 
magnitude in the proximity of various cylinders (under plane wave illumination) are shown to 
demonstrate how strong scatterers perturb the incident field. 

In Section 7, we exploit an alternative interpretation of the Born approximation, 
introduced by Slaney, et al, [1984], that allows one to define an "effective scattering potential" as 
a product of the scattering potential and the total field. Single-view images of the effective 
scattering potential are formulated in terms of the backpropagation algorithm. 

In Section 8, multi-view images are generated for several strongly scattering concentric 
cylinders, showing the failure of the Born approximation with such objects. Then, in Section 9, a 



differential cepstral filtering technique is introduced to isolate the scattering potential from 
single-view backpropagated images of the effective scattering potential. 

In Sections 10, 11, and 12 the differential filtering technique is demonstrated on exact 
*F ¥ T 

V—r, single-view backpropagated V—r, and single-view backpropagated V—r using a priori 

knowledge of the object support, respectively, where V is the scattering potential, *P is the total 

field, and x¥' is the incident field. Also, in Section 12, the effects of noise on the 
backpropagated image and differential cepstral filtering technique are examined. In Section 13, 
the differential cepstral filtering technique is applied to measured data from a square dielectric 
cylinder at 10 GHz. Finally, conclusions and recommendations are considered in Sections 14 
and 15, respectively. 

2. SCATTERED FIELD IN A TWO DIMENSIONAL INHOMOGENEOUS 
REGION 

In this section, we consider transverse magnetic (TM) scattering from an inhomogeneous 
object under plane wave illumination. The incident transverse electromagnetic (TEM) wave has 
a z component parallel to the non-varying z axis of the object. The z component of the incident 

field El
z(x,y)e~ia* satisfies the scalar wave equation 

^[EUx,y)e-iat] + ^[EUx,y)e-iat] = \^[Ei
z(x,y)e-i-t] (2.1) 

dx dy c   ä 

where c is the speed of light in a vacuum. Equation (2.1) reduces to the Helmholtz equation 

&      o2     ,2 E'z(x,y) = 0 (2.2) 

where k0 = a> I c is the free space wave number, co is the radian frequency, and the quantity in 

brackets operates on E'z(x,y). The time dependence e~lC0t has been omitted for brevity. 
The total field is defined to be 

Ez(x,y) = Ei(x,y) + Es
z(x,y) (2.3) 

where El
z(x, v) and El(x, v) are the incident and scattered field respectively. 

When inhomogeneities confined to a finite support D [Lin, et al, 1990] are considered, 
Eq. (2.2) must be modified to account for the wave number change within the medium. The 

wave number inside D becomes  k(x,y) = co^ß{x,y)e{x,y) where ju(x, v) and s(x, y) are the 



permeability and permittivity of the medium, respectively. Consider a lossless object with 

relative permittivity er(x,y) and relative permeability \ir(x,y) = l. In this case, k2(x,y) 

equals JcQSr(x,y). The total field within the inhomogeneous region must satisfy the Helmholtz 
equation 

+ —~ + klzr(x,y) 
dxz    dy 

Ez(x,y) = 0. (2.4) 

We define a scattering potential V(x,y) = [sr(x, v)-l] to be the change in relative permittivity 
with respect to the surrounding medium (free space in this case). This quantity describes the 
inhomogeneities within the object and directly relates to Wolfs [1969] definition 

&o [s r (x, y) -1]. Using Eqs. (2.2), (2.3) and V(x, v), it is easy to show that the scattered field 
satisfies the differential equation 

■ + ■ ■ + ki 
dxL    dy' 

Es
z(x,y) = -ktV(x,y)Ez(x,y). (2.5) 

The non-zero forcing term on the right hand side of Eq. (2.5) resembles the mathematical 
formulation that results from wave propagation in a region containing sources. We may interpret 
the forcing term as an equivalent polarization current [Pichot, et al, 1985] giving rise to the 

scattered field Ez(x,y). 
The first step in a Green's function solution to the second-order, non-homogeneous 

differential equation in Eq. (2.5) is to find a G(x,y,x',y') that satisfies 

■ + • ■ + ti 
dx£    dy' 

G(x,y,x',y') = -5(x -x', v - y'). (2.6) 

The solution to Eq. (2.6) that represents an outward traveling wave is: [Morita, et al, 1990, p. 18] 

G(r,r') = ~H$\k0\r-r'\), (2.7) 

where r = xx + yy, r' = x'x + y'y, and H^ \k0\r - r'|) is a zero-order Hankel function of the 
first kind. Since the Laplacian operator is a linear operator, the final step to the solution of Eq. 
(2.5) is the superposition of the weighted forcing term. The scattered field from an 
inhomogeneous region in two dimensions becomes 



Es
z(r) = -i^ \V(r')Ez(r')H$\k0\r-r'\)dr'. (2.8) 

D 

According to Eq. (2.3), the total z component of the electric field is found from the following 
integral equation for scattering: 

k2 

Ez(r) = Ez(r)-i-j- lV(r')Ez(r')H$\k0\r-r'\)dr'. (2.9) 
D 

Equation (2.9) is an inhomogeneous Fredholm integral equation of the first kind [Morse and 
Feshbach, 1953, p. 904] and also a Lippmann-Schwinger [Caorsi, et al, 1990] integral equation. 
This equation is difficult to solve since the desired quantity Ez(r) appears under the integral 
sign. 

The above analysis, could have been applied equally well to any other non-zero field 
component, Hx or Hy. However, only one component is necessary, namely E2, since 

1 ^ 

Maxwell's equation V xE = -io)juH. provides the other two: Hx(r) = Ez(r) and 
—icofx dy 

Hy(r) = —^-Ez(r). 
' icoju ax. 

3. BORN APPROXIMATION 

Let ^(r), ^'(r), and vP5(r) represent the total, incident and scattered field of either the 
electric or magnetic disturbance, respectively. Then the integral equation for scattering 
according to Eq. (2.9) is 

k2 
x¥(r) = x¥i(r)-i^- j7(r')xF(r')^1)(^o|r-r'|)^r'• C3-1) 

D 

Using the method of successive approximations [Morse and Feshbach, 1953, Part II] the total 
field in Eq. (3.1) is written [Fiddy, 1986] 

T(r) = vF('(r) + vF1(r) + xF2(r) + vP3(r)+--- (3.2) 

where 

^(^ = -1^- \V(r')¥(r')H$\kQ\r-r'\)dr' 
D 

and 



T„(r) = -& IVir'yy^r')!^^-r'\)dr'     for n = 2,3,4. 
D 

The scattered field can be written as: 

N 

*"(r) = 2X(r). (3.3) 
n=\ 

Convergence proofs of the iterative solution given in Eq. (3.2) are difficult to produce and are 
rarely available [Butkov, 1968, p. 648]; the technique of using higher order approximations 
(n > 1) to the scattered field is not a mature one [Slaney, et al, 1984]. 

Under weak scattering conditions, such that ^(r) « ^'(r), it is common to adopt the 

first Born approximation by using N= 1 in Eq. (3.3) to represent the scattered field. The first 
Born approximation can also be derived using the method of small perturbations to the solution 
of the wave equation [Tartarski, 1961, p. 122]. The scattered field in the first Born 
approximation becomes 

¥i<(r) = -*-f- jVir'^ir'WPikvlr-r'Ddr'. (3.4) 
D 

Physically, we interpret the object V(r) in Eq. (3.4) as being excited by the incident field ^'(r), 
the field that would be present if the object were nonexistent. As the scattering potential V(r) 
increases, the "equivalent excitation" F(r)xF(r), shown in Eq. (3.1) becomes more complex due 

to multiple scattering and less similar to F(r)¥'(!•) shown in Eq. (3.4). The first Born 
approximation for the scattered field fails for such objects. 

The first Born approximation works well for those cases where the relative change in 
electrical length through the object is much smaller than one radian [Ishimaru, 1991, p. 492]. 
Mathematically, this is written 

\kQa - ka\«1 

where a is the maximum dimension of the object. Equation (3.5) can easily be written i 

of the refractive index n as |&0(l-«)a| «1 or the relative permittivity as k0(l-^Je^)a 

i i    ft In practice, researchers have successfully used \k0(l - n)a\ < — [Slaney, et al, 1984] and 

\k0(l- n)a\ < 2 [Fiddy, 1986] as less stringent criteria than Eq. (3.5). 

(3.5) 

in terms 

«1. 



4. RYTOV APPROXIMATION 

Like the Born approximation, the Rytov approximation is another method used to 
linearize the integral equation of scattering, thus providing an equation that is solvable [Ishimaru, 
1991, p. 623]. However, as we shall see, the domains of validity of the two approximations are 
different. 

The Rytov approximation is based on the substitution: 

¥(Xiy)Se*x>y) = e*lix'y)+*S(x'y). (4.1) 

According to Eq. (2.5), the wave equation for an arbitrary field component ^(x, v) in an 
inhomogeneous region is given by 

[V2 + k$]e*x'y) = -k$V(x,y)e*{x>y). (4.2) 

When inhomogeneities are not present V(x, v) = 0, and we have 

[V2 + k$]e*'ix>y) = 0. (4.3) 

It is straightforward to show that Eqs. (4.2) and (4.3) can be reduced to the following two Riccati 
equations, respectively, 

V V(x, v) + V<z5(x, v) • Vflx, v) + kl[1 + V(x, v)] = 0 (4.4) 

and 

vV(xj) + V/(xj)-V^j) + io2 = 0. (4.5) 

Subtracting Eq. (4.5) from Eq. (4.4) (recall that fax,y) = 0l(x,y) + 0s(x,y)) gives 

vV(x,v) + [V^,v)-V^(x,v)-V^(x,v)-V/(x,v)] + ^0
2F(x,v) = 0.    (4.6) 

The term in brackets in Eq. (4.6) can be written (omitting the arguments) as 

(4.7) 

Using Eq. (4.7) in Eq. (4.6), we write 
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y2xs S       7,2T Vz(|)s + 2V<|>* ■ Vf = -V(j)s ■ V(|>5 - k$V (4.8) 

Now, solving for the last two terms in the identity [Ishimaru, 1991, p. 623] 

72rJ)Vi = f\72Jl ^s j. oJl 'v?2xs VV f ] = (W )<})5+2e<p Vf-Vf+ e* V2(|> (4.9) 

we find that 

2/ V<|>s • Vf + e*' V2(j)5 = V2 [*♦' (|)* ] + jfcje*' <|> *. (4.10) 

Note that it is easy to show Ve'  = -^oe   J 
since e        is the incident field e   °r'r. 

Equation (4.10) can be written as 

V2f+2Vf-Vf'= — 
Jl vVV] + *oe*V (4.11) 

Substituting Eq. (4.11) into the left-hand side of Eq. (4.8) and rearranging, we find a non- 
homogeneous differential equation resembling the form of Eq. (2.5) (arguments are now 
included) 

[V2 + /to^^VCr) = ef (r)[-V^(r) • Vf (r)- /t0V(r)]. (4.12) 

We may neglect the term Vf (r)-Vf (r) for those cases where Vf (r) « Vf (r) 

[Tartarski, 1961, p. 125]. This implies that Vf (r) 
2n    . 

«— since Vf'(r)=|V(i*or/T)| = *o. 

Physically, Vf (r) cannot change quickly over the distance of a wavelength - the scale at which 
V{r) fluctuates should be larger than the wavelength for the Rytov approximation to be valid. 

Using Rytov's approximation, Eq. (4.12) is written 

[V2 + jfc0
2]/(r)f (r) = -k%V(r)e*l{r). 

According to the Green's function solution (Eq. (2.7)), Rytov's first approximation to the 

unknown phase f (r) is 

(4.13) 



f(r) = -1^-^ \e*i{r']V(r')H$\k0\r-r'\)dr'. (4.14) 

In Eq. (4.14), we recognize the integral as the first Born approximation to the scattered field, and, 
using Eq. (3.4), one can show the following relationship 

^(r)=%A(r) (415) 
*<i 

Although there is a simple relationship between the first Born approximation to the scattered 
field and Rytov's approximation to the scattered phase, the domains of validity of the two 
approximations are quite different [Devaney, 1981], [Lin, et al, 1992]. The Born approximation 
requires that the phase delay introduced by the object's presence be much less that one radian 
compared to the phase of an undisturbed wave. In contrast, the Rytov approximation requires 
that the change in refractive index with respect to distance be small on the scale of the 
wavelength, with no restriction placed on the object's size. 

5.        FAR-FIELD TRANSVERSE MAGNETIC (TM) SCATTERING FROM A 
CIRCULAR CYLINDER 

In Section 2, we considered scattering from a nonhomogeneous region and showed how 
the integral equation of scattering (2.9) was developed. In general, it is difficult to solve Eq. 
(2.9) for the scattered field since the scattered field is also contained within the integral. Exact 
solutions to the scattered field from any object would be beneficial in providing input data to 
inversion algorithms. In this section, we summarize the procedure for obtaining the scattered 
field from a circular cylinder under plane wave illumination for which an exact solution does 
exist [Ishimaru, 1991], [Ruck, 1970], [Jones, 1964]. In Section 9, we use the scattered field data 
as input to our image reconstruction algorithm. 

Consider a circular dielectric cylinder with radius a and wavenumber ka , as shown in 

Figure 1, illuminated by the plane wave xi'1 (x, y) = el °r/r. Assume that the wave travels in the 
f,- = -x direction. The total field in each region is a linear combination of cylindrical wave 

eigenfunctions and is described by the following equations [Harrington, 1961, p. 233] (e~imt 

time convention assumed) 

00 

**W) = Y,(-iyiUkoP) + anH2\k0p)]e^   fovp>a (5.1) 
«=-oo 

and 



%(r,ft= efWi-r 

'0 

Figure 1 Cross section of homogeneous dielectric cylinder of radius a. 

10 



¥a(p,40= T(-i)n[cnJn(kap)]e^   forp<a (5.2) 

The first term in Eq. (5.1) represents a wave transformation [Harrington, 1961, p. 230] of 

the incident field e~lk°x and the second term represents outward traveling waves. In Eq. (5.2), 
Bessel functions of the first kind are used so that the field remains finite at p = 0.   The unknown 
coefficients an and cn are found by applying the appropriate boundary conditions. 

Continuity of the electric and magnetic fields at the boundary implies that the field and its 
normal derivative are continuous at the boundary. Continuity of the fields, ^(p,^) = *Fa (p,(|>), 
at p = a yields 

a„ = Cn
Jn(kaa)-Jn(k0a) (5.3) 

2 £ 

and continuity of the normal derivative, —T(p,<j>) = —^(p,^), at p = a yields 
op op 

Ka 

J^jk^ + a^ (fro) 

Jn (kaa) 
(5.4) 

where the prime denotes a derivative with respect to p. The simultaneous solution for c„ from 
Eqs. (5.3) and (5.4) gives 

cn=~ 
KJn (k0a)Jn (Ka) + hJn (k0

a)Jn(kaa) 

kaH^\kQa)J^ (kaa) - koH<P (k0a)Jn(kaa) 
(5.5) 

Using J_„(z) = (-1)" Jn(z) and (e'"* + e '♦) / 2 = cose)), we recognize that c„ = c_n [McGahan, 
1992]. Therefore the total field in each region can be written 

and 

^(P,<j>)= X(-0"U^(*oP) + *XW)]cos(H>)  forp>a (5.6) 
n=0 

^(P,*)= SH)Be„[c„Jn(*flp)]cos(/i(|>)   for p<a, 
«=o 

(5.7) 
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12 w = 0 
where eh     ,. 

« = 1,2,3,... ■« 

and c„ and an are given in Eqs. (5.5) and (5.3), respectively. Note that for p > a, numerical 
computation of the total field converges much faster when the incident field is replaced by its 
simpler form 

¥(p,4>) = e~ikQX + 2(-0"s„a„^1)(^0p)cos(«(t))   for p > a. (5.8) 
71=0 

The second term in Eq. (5.8) represents the scattered field and may be used as input to the 
inversion algorithm described in Section 7. 

Equations (5.7) and (5.8) are used to calculate the total field at 10 GHz in the interior and 
exterior regions of several homogeneous cylinders of radius 4.25 cm under plane wave 
illumination. Figures 2-11 show the magnitude of the total field for relative permittivities 
between 1.01 and 10.0 with the field incident from the top of the page. 

The gray scale range is held constant for each plot in all figures so that the field 
magnitudes are relative. Consequently, the perturbation in total field due to the cylinder with 
relative permittivity 1.01 as shown in Figure 2 is undetectable. As the relative permittivity 
increases, focusing effects and shadow regions can be identified in the figures. Also, the 
diameter of the cylinder becomes more clearly defined. 

According to the criterion established in Section 3, the Born approximation, in these 
examples, is violated for er > 1.2. 

12 
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Figure 2 Total field intensity internal and external to a homogeneous dielectric 
cylinder of radius 0.0425 m and relative permittivity sr = 1.0  under plane wave 
illumination at 10 GHz. Field-of-view is 0.1984 m on each side. 
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Figure 3 Total field intensity internal and external to a homogeneous dielectric 
cylinder of radius 0.0425 m and relative permittivity sr = 1.1 under plane wave 
illumination at 10 GHz. Field-of-view is 0.1984 m on each side. 
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Figure 4 Total field intensity internal and external to a homogeneous dielectric 
cylinder of radius 0.0425 m and relative permittivity sr = 1.2 under plane wave 
illumination at 10 GHz. Field-of-view is 0.1984 m on each side. 
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Figure 5 Total field intensity internal and external to a homogeneous dielectric 
cylinder of radius 0.0425 m and relative permittivity er = 1.4 under plane wave 
illumination at 10 GHz. Field-of-view is 0.1984 m on each side. 
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Figure 6 Total field intensity internal and external to a homogeneous dielectric 
cylinder of radius 0.0425 m and relative permittivity sr = 1.8 under plane wave 
illumination at 10 GHz. Field-of-view is 0.1984 m on each side. 

Figure 7 Total field intensity internal and external to a homogeneous dielectric 
cylinder of radius 0.0425 m and relative permittivity sr = 2.2 under plane wave 
illumination at 10 GHz. Field-of-view is 0.1984 m on each side. 

15 



1 
120 

100 

80 

60 

^     ?m 

■ 

40 F           ip|       Fjg 
1 1 

• 

20 

n 

11 

0          20         40         60         80        100      120 

Figure 8 Total field intensity internal and external to a homogeneous dielectric 
cylinder of radius 0.0425 m and relative permittivity sr = 2.56 under plane wave 
illumination at 10 GHz. Field-of-view is 0.1984 m on each side. 
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Figure 9 Total field intensity internal and external to a homogeneous dielectric 
cylinder of radius 0.0425 m and relative permittivity er = 3.0 under plane wave 
illumination at 10 GHz. Field-of-view is 0.1984 m on each side. 
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Figure 10 Total field intensity internal and external to a homogeneous dielectric 
cylinder of radius 0.0425 m and relative permittivity sr = 5.0 under plane wave 
illumination at 10 GHz. Field-of-view is 0.1984 m on each side. 

Figure 11 Total field intensity internal and external to a homogeneous dielectric 
cylinder of radius 0.0425 m and relative permittivity zr = 10.0 under plane wave 
illumination at 10 GHz. Field-of-view is 0.1984 m on each side. 
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6. FAR-FIELD TRANSVERSE MAGNETIC (TM) SCATTERING FROM TWO 
CONCENTRIC CYLINDERS 

In this section, the procedure for obtaining the scattered field from two concentric circular 
cylinders under plane wave illumination for which an exact solution does exist is summarized 
[Tang, 1957], [Ruck, 1970]. Later, we use this scattered field data as input to our image 
reconstruction algorithm. 

Consider a cross section of two concentric cylinders with inner radius a and outer radius 
b with respective wavenumbers as shown in Figure 12. The field in each region is a linear 
combination of cylindrical wave eigenfunctions and is described by the equations 

*W)= EC-OVHCVH^W)]«'"' ^P>b (6-1) 
n=-cc 

%(pj) =  Y,ny[b„H?\kbp) + cRH<}\kbp))*la'   fora<p<b (6.2) 
«=-oo 

and 

Va(P>*)=  EHm^P)]«"'   forp<a. (6.3) 

The first term in Eq. (6.1) represents a wave transformation of the incident field e~' °x and the 

second term represents outward traveling waves. Equation (6.2) combines outgoing H[   and 

incoming H^ cylindrical waves (recall that an e~ia" time convention is assumed). Bessel 
functions of the first kind are used in Eq. (6.3) so that the field remains finite at p = 0.   The 
unknown coefficients an,bn,cn, andd„ are found by applying appropriate boundary conditions. 

Continuity of the fields at p= a and p = b gives 

bnH^\kba) + cnH^\kba) = dnJn{kaa) (6.4) 

and 

Jn(k0b) + anHH\k0b) = bnH^\kbb) + cnH^\kbb). (6.5) 

Continuity of the normal derivatives of the fields at p = a and p=b gives 

kbbnH^\kba) + kbcnH^ (kba) = kadnJ»{kaa) (6.6) 

and 

V„\k0b) + k0anH^\k0b) = kbbnH^ (kbb) + kbcnH^ (kbb) (6.7) 
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Figure 12 Cross section of two concentric cylinders of inner radius a and outer 
radius b. 
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where the prime denotes derivative with respect to p. The simultaneous solution of Eqs. (6.4), 
(6.5), (6.6) and (6.7) provides the unknown coefficients an,bn,cn and dn . We find that 

c„=   X                                                             (6.8) 
"    Y + Z 

where, 

X = *flÄi2)(MK'M-kbH™ (kba)jn(kaa) J^(k0b)H^(k0b)-Jn(k0b)H^(k0b) 

Y = kbH$\kba)Jn(kaa)- kaH^\kba)J^{kaa) ^H^(kbb)H^(k0b)- H^\kbb)H^\k0b) 
KQ 

Z = kaH^\kbay^ (kaa)- kbH™ (kba)Jn(kaa) kf tf <"' (kbb)^(k,b)- H<!Xkbb)W (M) 
KQ 

K=cn 
kbJn{kaa)H^M- KJn (kaa)H^(kba) 

_kX(kaa)H^(kba)- kbJn{kaa)H™ (kba) 
(6.9) 

d      kbbnH^'(kba)+kbcnH^(kba)                                 (6 1Q) 

KJn (Ka) 

kbbnH^' (kbb)+kbcnH^' (kbb)~ v; (k0b)          {6n) 

k0H^ (k0b) 

The only coefficient given explicitly is cn; other coefficients are found through back 
substitution. 

As described in Section 5, the +n and -n terms may be grouped to describe the fields 
^(p,«!)), ^(p,^), and ^a(p^) in a more simple form. Therefore, we may write the fields as a 
summation from n = 0 to n = oo 

oo 

V(p,$)=YJZn(-On[Jn(koP) + anH
(n)(k0p)]cos(n<?)   forp>6.             (6.12) 

72=0 

oo 

Vb(pA)=YJZn(-On[bnH¥\kbp) + cnHV)(kbp)]cos(n<?)   fora<p<&.        (6.13) 
n=0 
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Va(p,<f>)=^jen(-i)
n[dnJn(kap)]cos(n<?,)   forp<a, (6.14) 

H = 0 
where e„=\. 

n = 1,2,3,... 

Use of Eqs. (6.12), (6.13), and (6.14) allows one to calculate the total field at any point internal 
or external to the object. In practice, the infinite summations in the above equations are 
truncated once an established convergence criterion is met. Again, numerical computation of the 
field for p> b is found by replacing the incident field by its simpler form 

00 

V(pJ) = e-"** + 2>w(-iya^if?W)cos(»0 • (6-15) 

The second term in Eq. (6.15) represents the scattered field (p > b) and is used as input to the 

inverse algorithm. 
Equations (6.13), (6.14), and (6.15) are used to compute the total field at 10 GHz in the 

interior and exterior regions of several concentric cylinders. For each example considered, the 
inner permittivity was fixed at sr = 2.2, and the inner and outer radii were held constant at 2.15 
cm and 4.25 cm, respectively. 

In Figures 13 through 22 we plot the magnitude of the total field as the relative 
permittivity of the outer annulus increases from 1.01 to 10.0 (field incident from the top of the 
page). Again, the gray scale range is the same for each plot in Figures 13 through 22 so that the 
values remain relative. 

The outer cylinder is undetectable until sr -1.4 as shown in Figure 16. As the 
permittivity increases, focusing effects and shadow regions become more prominent. All 
examples shown in Figures 13 through 22 violate the criterion established in Section 3 for the 
weakly scattering approximation. 

7. IMAGE RECONSTRUCTION ALGORITHM 

In this section, we first demonstrate the Fourier transform relationship between the 
scattering potential and the scattered far-fields valid for weakly scattering objects [Wolf, 1969], 
[Devaney, 1977], [Chew, 1990], [Lin, et al, 1990]. Next, the problem associated with the Fourier 
inversion technique as it applies to strongly scattering objects is described. Lastly, image 
reconstruction using the single-view backpropagation algorithm is shown to be valid for arbitrary 
scatterers (weak or strong). 

Recall the Green's function solution to the scattered field ^(r,?,) given in Eq. (2.8) 
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Figure 13 Total field intensity internal and external to two concentric dielectric 
cylinders (inner radius 0.0215 m and outer radius 0.0425 m) under plane wave 
illumination at 10 GHz. Relative permittivity of inner cylinder is fixed at sr = 2.2 and 
relative permittivity of outer annulus is zr = 1.0   Field-of-view is 0.1984 m on each 
side. 
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Figure 14 Total field intensity internal and external to two concentric dielectric 
cylinders (inner radius 0.0215 m and outer radius 0.0425 m) under plane wave 
illumination at 10 GHz. Relative permittivity of inner cylinder is fixed at sr = 2.2 and 
relative permittivity of outer annulus is er = 1.1 Field-of-view is 0.1984 m on each 
side. 
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Figure 15 Total field intensity internal and external to two concentric dielectric 
cylinders (inner radius 0.0215 m and outer radius 0.0425 m) under plane wave 
illumination at 10 GHz. Relative permittivity of inner cylinder is fixed at zr = 2.2 and 
relative permittivity of outer annulus is sr = 1.2 Field-of-view is 0.1984 m on each 
side. 
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Figure 16 Total field intensity internal and external to two concentric dielectric 
cylinders (inner radius 0.0215 m and outer radius 0.0425 m) under plane wave 
illumination at 10 GHz. Relative permittivity of inner cylinder is fixed at sr = 2.2 and 
relative permittivity of outer annulus is zr = 1.4 Field-of-view is 0.1984 m on each 
side. 
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Figure 17 Total field intensity internal and external to two concentric dielectric 
cylinders (inner radius 0.0215 m and outer radius 0.0425 m) under plane wave 
illumination at 10 GHz. Relative permittivity of inner cylinder is fixed at zr = 2.2 and 
relative permittivity of outer annulus is zr = 1.8 Field-of-view is 0.1984 m on each 
side. 
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Figure 18 Total field intensity internal and external to two concentric dielectric 
cylinders (inner radius 0.0215 m and outer radius 0.0425 m) under plane wave 
illumination at 10 GHz. Relative permittivity of inner cylinder is fixed at zr = 2.2 and 
relative permittivity of outer annulus is sr = 2.2 Field-of-view is 0.1984 m on each 
side. 
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Figure 19 Total field intensity internal and external to two concentric dielectric 
cylinders (inner radius 0.0215 m and outer radius 0.0425 m) under plane wave 
illumination at 10 GHz. Relative permittivity of inner cylinder is fixed at sr = 2.2 and 
relative permittivity of outer annulus is er = 2.56 Field-of-view is 0.1984 m on each 
side. 
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Figure 20 Total field intensity internal and external to two concentric dielectric 
cylinders (inner radius 0.0215 m and outer radius 0.0425 m) under plane wave 
illumination at 10 GHz. Relative permittivity of inner cylinder is fixed at sr = 2.2 and 
relative permittivity of outer annulus is sr = 3.0 Field-of-view is 0.1984 m on each 
side. 

25 



120 

100 

Figure 21 Total field intensity internal and external to two concentric dielectric 
cylinders (inner radius 0.0215 m and outer radius 0.0425 m) under plane wave 
illumination at 10 GHz. Relative permittivity of inner cylinder is fixed at er = 2.2 and 
relative permittivity of outer annulus is zr = 5.0 Field-of-view is 0.1984 m on each 
side. 
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Figure 22 Total field intensity internal and external to two concentric dielectric 
cylinders (inner radius 0.0215 m and outer radius 0.0425 m) under plane wave 
illumination at 10 GHz. Relative permittivity of inner cylinder is fixed at sr = 2.2 and 
relative permittivity of outer annulus is er = 10.0 Field-of-view is 0.1984 m on each 
side. 
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4"(r,r,-) = k2
Q J^r'mr'.f.OGCr.r')*', (7.1) 
D 

where *F5(r,r,-) is the scattered field, k0 is the free space wavenumber, V(r) is the scattering 
potential, and G(r,r') is the Green's function. Assume that a plane wave is incident on the 

object from direction f,- such that T(r,f,-) = eik°f'r +T5(r,f;). Note that the field dependence 
on r, is shown explicitly in Eq. (7.1). Substituting for ^(r,?,-) and using Eq. (2.7) in Eq. (7.1) 
yields 

¥'(r,f,) = -& \V(v')[eik^r' + m'iT'MtipQik ~ «"I)*' • (7-2) 

The frequency dependence of *Fs(r,r,) is not shown within the arguments since a single 

frequency is used throughout. In the far field, H§\k0\r - r'|) can be approximated [Morita, et. 
al, 1990] by 

In addition, |r - r'| may be approximated by r - r' • f for phase terms (Appendix A) and by r for 

amplitude terms. Therefore, the far-field approximation of H§\k0\r - r'|) becomes 

4   I      2        }ilt/2   ikQr  -iiz/4   -ikQr'-r 

i \ I6nk0r 
e,n^eiK0re-,n,«e-iK0rT (? 4) 

_ 4 1       gi (kQr+n/4)e-ikQr'-t ^ 

i \ ünk^r 

Upon substitution of Eq. (7.4) into Eq. (7.2), the scattered far field becomes 

V'ff(r,Tt) = -l^/^^ \V(r')[eik^r' + ^(r'^W^dr'. (7.5) 

Equation (7.5) can be written in terms of a scattering amplitude F(r,f() 
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F(r,f;) = -L- \v{r')[eik^ir' +^s{r',ri)]e-ikQr'idr', 
ATZ t;i   D 

(7.6) 

where 

F(r,fi) = - 
2n3kl 

f'^'A^r.r,.). (7.7) 

Recall that for weakly scattering objects xFs(r,f;) « ¥'(r,f;-) and vF5(r,f;) maybe 

neglected under the integral in Eq. (7.6) (Section 3). In this case, 

FBA(r,ri) = -L \V(r')e-ik^-f')r'dr', 
4*   D 

(7.8) 

and the Fourier transform of the scattering potential is defined as 

1    °° 
F(k) = -V \V(r')e-ikr'dr' 

4n    \ 
(7.9) 

?BA F    (r,f,) specifies the Fourier transform of the scattering potential at k = &0(f - r,-). In 
Cartesian coordinates, we may write 

..      oo   oo 

V(Kx,Ky) = -^ J \V(x',y')e-i(KxX'+Kyy)dx'dy'. (7.10) 

As indicated in Eq. (7.8), the accessible range of Fourier values k is limited to k0(r - r;), or 
Kx = ifc0(cos(|> s - coscj),) and Ky = &0(sin(j)s - sin <(>,•) in Cartesian coordinates. 

With the angle of illumination (j>; constant, variation of the observation angle § s traces a 
circle of radius k0 tangent to the origin of KxKy space. More complete Fourier data are 
accumulated by selecting a new angle of incidence and again varying the observation angle <j)s. 
An inverse Fourier transform of the scattering amplitude data appropriately placed in KxKy 

space produces an estimate of V(x, v). The image is a low-pass filtered version of the original 
scattering potential since spatial frequencies higher than |2&0| generate evanescent waves whose 
contribution is essentially zero in the object's far field. Mathematically, the low-pass 
reconstruction of a weakly scattering object is written 
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1        00    00 

V(x,y)**h(x,y) = -^ \ \V(Kx,Ky)H(Kx,Ky)ei{KxX'+Kyy,)dKxdKy      (7.11) 
4rc   _^ -oo-oo 

where ** represents two-dimensional convolution. Also, h(x,y) is known as the point spread 
function (PSF) and its Fourier transform  H(Kx,Ky) is a frequency space "window" whose 

value is one for JKX + Ky < 2k0 and zero otherwise. The PSF has A.0/2 resolution (-3dB), a 

first side lobe level approximately -17.5 dB, and in practice, its effect has been largely neglected 
[Pan et al, 1983]. 

When imaging objects violate the Born approximation, Ho and Carter [1976] noticed that 
the image of the scattering potential was perturbed by the incident field. Slaney, Kak, and 
Larsen [1984] then proposed an alternative interpretation of the Born approximation that can be 
described as follows. Equation (7.6) can be written in the form 

F(r,r,) = -lTfF(r')T(r',f,) 
4*   D 

¥'(r',ff) 

4"'(r',?,) 
e-ik0r'-fdr, (712) 

where the total field ^(r,?,-) is written for elk°ri'r + ^¥s(r,rt) and the term in brackets (unity) is 

introduced. Since x¥i(r,fi)=e'k°fi'r, we may write (7.12) as 

F(r,r,) = -L Hr'.f,.)*-''*0^*'*', (7.13) 
4*   D 

where the effective scattering potential is 

r<r.,,).™i> (7,4) 
*¥ (r,r;) 

and its Fourier transform is defined by 

P(k)E-iy \V'(r',Ti)e-ik-r'dr'. (7.15) 
4n    J 

-00 

F(r,rt) determines the Fourier transform of the effective scattering potential at k = k0(r - r,-). 
In effect, blindly applying the Born approximation will provide Fourier data on F'(r,?j). 
Equation (7.13) is used as the basis of an inversion algorithm for strongly scattering objects - 
those objects that violate the Born approximation. Of course, Eq. (7.13) reduces to Eq. (7.8) 
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when the Born approximation is valid. Equation (7.13) represents an alternative interpretation of 
the integral equation of scattering and we shall discuss limitations that arise when objects are 
strong scatterers. 

In Cartesian coordinates Eq. (7.15) is written 

oo   oo 

V'(Kx,Ky) = -^ f \V'{x'ty'^i)e-t{KxX'*Kyy)dx'dy\ 
7      ATZ    J   J 

(7.16) 

In an attempt to recover V'(x, v,<|>;) one might try the inverse Fourier transform, by multiplying 

both sides of Eq. (7.16) by e     x*+ yy  and integrating over all Kx and Ky as shown in an 

analogous example in Appendix B. However, V'(x,y,^t) cannot be removed from the 
innermost two integrals that result, as shown in Appendix B, since K'(x, v,<|>;) depends on the 
Fourier variables Kx and Ky. Therefore, simple Fourier inversion (using all Kx and Ky space) is 

not appropriate to recover V\x,y,^i) for strongly scattering objects. 
Dechene, et al, [1985] implemented a reconstruction algorithm that did not require first- 

order Born or Rytov approximations to be valid. They simply applied the weak scattering 
Fourier algorithm using data acquired from more strongly scattering objects. The qualitative 
images obtained could not be related to the object function of concern.   The authors did admit 
that the technique had problems related to the appropriateness of image reconstruction by Fourier 
inversion when the objects violated the Born or Rytov approximation. 

To avoid the problems mentioned above, we utilize the backpropagation algorithm 
[Devaney, 1982] using a single illumination direction. In this case, <|>; remains constant and 
Fourier inversion of Eq. (7.16) is valid for arbitrary scatterers. 

The backpropagation algorithm was originally developed for those objects that satisfy 
Born or Rytov approximations and can be written as 

2 t   i 

V(r')**Kr') = %- j JFir^yW-^'Jl-cos^,-^)^^;, (7.17) 

where /z(r') is the PSF described earlier. Equation (7.17) is equivalent to the inverse 2D Fourier 
transform of F(r,f,-) with a change in variables from (Kx, Ky) to (<|>5,<|>;). The square root 

factor arises from the Jacobian [Grossman, 1986, p. 389] of the transformation such that 

dKv    dKr 

dKy    dKy 

3<j>5     d$i 

-£0sin(j)5     &0sin<t>,- 

Ä:0cos(()s    -Ä:0cos(j)i 

= ^0
2Vl-cos2((j)5 -<|>,.). (7.18) 
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Also, a factor of 1/2 is included in Eq. (7.17) since the Fourier domain is covered twice by this 
change in variables. 

It was mentioned previously that backpropagation is not appropriate to recover P(r',f;), 
that is 

■ 2  x  x 

V'ir'WKr')*-*- j JF(r,f,)e'*o<p-f'>rVl-cos2(0, - frW^ .      (7.19) 
—TC-1C 

However, by specifying (f>i to be constant, we may formulate a single-view (sv) image of 

V'(T',Ti) 

V'(r',riy*hsv(r',ri) = ^ ^(r,^^'^'^l-cos2^-^^,.        (7.20) 

The image of P(r',f;) is convolved with /25V(r',r;) since Fourier data on F'(r',r;) is limited, in 
this case, to the frequency space circle £0(r-r;) with <f>t constant. Here hsy(y',Xj) is the 
inverse Fourier transform of the frequency space window, which has the weighted value 

I l-cos {(f>s -<f>i) on the Fourier coordinates &0(f-r;), and zero otherwise. Recall that the 
weighting was introduced from the change in variables in the inverse Fourier transform and was 
necessary to combine multiview data as in Eq. (7.17).   Equation (7.20) represents a single-view 
reconstructed image of P(r',f;) convolved with /ZyV(r',f,-). In Section 11, there is a discussion 
of a nonlinear filtering technique that attempts to recover the scattering potential V{x,y) from 
the image produced by Eq. (7.20) for various simulated scattered fields. Note that uniqueness in 
the reconstruction of F'(r',f;) cannot be guaranteed [Devaney, 1978]. 

8. BORN RECONSTRUCTIONS 

In Section 7, images reconstructed according to the backpropagation algorithm of Eq. 
(7.17) provided a low-pass estimate of the scattering potential V(r). In this section, we 
reconstruct multiview images using the exact scattering amplitude from several strongly 
scattering objects without regard to the appropriateness of doing so. Images of the objects are 
expected to deteriorate as the Born approximation becomes less valid. Duchene, et al, [1985] 
implemented a similar procedure and found difficulty in relating multiview images to 
quantitative descriptions of the object's scattering potential. 

The objects used in this study are concentric cylinders since they are strongly scattering 
2D objects and an exact solution to the scattered field was given in Section 6. We examine five 
concentric cylinders with outer/inner relative permittivities of 1.1/1.03, 1.03/1.1, 4/4, 4/2, and 
2/4. A one-dimensional profile through the various cylinders is shown in Figure 23. Hereafter, 
these objects will be referred to as obj_l.l/1.03, obj_l.03/1.1, obj_4/4, obj_4/2, and obj_2/4 as 
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Figure 23 Radial cuts in relative permittivity for various cylinders under investigation 
a) obj_l.l/1.03 b) obj_l.03/1.1 c) obj_4/4 d) obj_4/2 e) obj_2/4. 
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Figure 23 (cont.) Radial cuts in relative permittivity for various cylinders under 
investigation a) obj_l.l/1.03 b) obj_l.03/1.1 c) obj_4/4 d) obj_4/2 e) obj_2/4. 
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indicated in Figure 23. For each concentric cylinder the inner radius is 3.6 cm and the outer 
radius is 9.9 cm. The abscissa index of all plots shown in Figure 23 spans a field of view of 64 
cm; that is, each abscissa unit in Figure 23 represents 0.25 cm. 

Recall that the Born approximation requires that the phase delay introduced by the 
object's presence be small compared to the phase accumulated in the absence of the object, as 

mentioned in Section 3. Mathematically, k0(l - -Je^)a should be less than 2 radians [Fiddy, 

1986]. Using the cylinder's diameter for a, we find that k0(\-^£^)a ranges from 

approximately 2 for obj_l.l/1.03 and obj_l.03/1.1 to 41 for obj_4/4, obj_4/2, and obj_2/4. The 
first two cylinders shown in Figure 23 a) and b) may be considered weakly scattering objects. 
However, the cylinders shown in Figures 23 c), d), and e) clearly violate Eq. (3.5) and are 
considered strongly scattering objects. 

In what follows, we backpropagate the exact scattered field data using the objects shown 
in Figure 23. Fifteen equally spaced illumination directions or views were processed for each 
object. Again, images reconstructed from more strongly scattering objects using this multiview 
technique are expected to be poor since they violate the Born approximation. 

Figures 24, 25, and 26 show the real part, the imaginary part, and the magnitude, 
respectively, of the equivalent Born reconstruction for obj_l.l/1.03. In Figure 27, we see a one 
dimensional slice through the two dimensional image of Figure 26. The magnitude of the 
resultant image is similar to the original profile shown in Figure 23 a. 

Figures 28, 29, and 30 show the real part, the imaginary part, and the magnitude, 
respectively, of the equivalent Born reconstruction for obj_l.03/1.1. A one dimensional slice 
through the two dimensional image of Figure 30 is shown in Figure 31. Again the magnitude of 
the image agrees with the original profile shown in Figure 23 b. 

Similar plots for the more strongly scattering objects are shown in the remaining figures. 
Specifically, Figures 32 through 35 correspond to obj_4/4, Figures 36 through 39 correspond to 
obj_4/2, and Figures 40 through 43 correspond to obj_2/4. Although the equivalent Born 
reconstruction does identify the edges well, the structure of the scattering potential is not 
recovered for these more strongly scattering objects as shown in Figures 35, 39, and 43. 

9. DIFFERENTIAL CEPSTRAL FILTERING 

Two signals combined by additive "superposition" can be separated through linear 
filtering in the spectral domain, as long as their spectra do not overlap. However, linear filtering 
cannot be applied to two signals that are combined through multiplicative or convolutional 
"superposition" because their spectra are convolved and multiplied, respectively, [Oppenheim, et 
al, 1968, 1975]. Oppenheim [1965] generalized the theory of superposition to include those 
signals combined through addition, multiplication, convolution, etc. The combined signals were 
transformed into an additive space, which could be treated with a simple linear filter, then 
inverted to the original data space. In this section, we desire to separate the scattering potential 
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Figure 24 Real part of equivalent Born reconstruction of obj_l.l/1.03 using 15 
equally spaced illumination directions. Field-of-view 64x64 cm^. 
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Figure 25 Imaginary part of equivalent Born reconstruction of obj_l .1/1.03 using 15 
equally spaced illumination directions. Field-of-view 64x64 cm^. 
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Figure 26 Magnitude of equivalent Born reconstruction of obj_l.l/1.03 using 15 
equally spaced illumination directions. Field-of-view 64x64 cm^. 
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Figure 27 One dimensional slice through the center of Figure 26. Length of slice is 
64cm. 
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Figure 28 Real part of equivalent Born reconstruction of obj_l .03/1.1 using 15 
equally spaced illumination directions. Field-of-view 64x64 cm2. 
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Figure 29 Imaginary part of equivalent Born reconstruction of obj_l .03/1.1 using 15 
equally spaced illumination directions. Field-of-view 64x64 cm2. 
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Figure 30 Magnitude of equivalent Born reconstruction of obj_l.03/1.1 using 15 
equally spaced illumination directions. Field-of-view 64x64 cm2. 
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Figure 31 One dimensional slice through the center of Figure 30. Length of slice is 
64cm. 
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Figure 32 Real part of equivalent Born reconstruction of obj_4/4 using 15 equally 
spaced illumination directions. Field-of-view 64x64 cm^. 
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Figure 33 Imaginary part of equivalent Born reconstruction of obj_4/4 using 15 
equally spaced illumination directions. Field-of-view 64x64 cm^. 
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Figure 34 Magnitude of equivalent Born reconstruction of obj_4/4 using 15 equally 
spaced illumination directions. Field-of-view 64x64 cm2. 
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Figure 35 One dimensional slice through the center of Figure 34. Field-of-view 
64cm. 
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Figure 36 Real part of equivalent Born reconstruction of obj_4/2 using 15 equally 
spaced illumination directions. Field-of-view 64x64 cm^. 

60 

50 ■ 

40 • 

30 

20 

10 

0    10   20   30   40   50   60 

Figure 37 Imaginary part of equivalent Born reconstruction of obj_4/2 using 15 
equally spaced illumination directions. Field-of-view 64x64 cm^. 
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Figure 38 Magnitude of equivalent Born reconstruction of obj_4/2 using 15 equally 
spaced illumination directions. Field-of-view 64x64 cm2. 
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Figure 39 One dimensional slice through the center of Figure 38. Length of slice is 
64cm. 
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Figure 40 Real part of equivalent Born reconstruction of obj_2/4 using 15 equally 
spaced illumination directions. Field-of-view 64x64 cm^. 
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Figure 41 Imaginary part of equivalent Born reconstruction of obj_2/4 using 15 
equally spaced illumination directions. Field-of-view 64x64 cm^. 
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Figure 42 Magnitude of equivalent Born reconstruction of obj_2/4 using 15 equally 
spaced illumination directions. Field-of-view 64x64 cm^. 
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Figure 43 One dimensional slice through the center of Figure 42. Length of slice is 
64cm. 
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V(r) from the backpropagated image V(r) 
T(r,r,) ** /z5v(r). Note that uniqueness in the 
T<(r,iv) 

reconstruction of V(r) cannot be guaranteed [Devaney, 1978]. The width of the point spread 
function /^(r) is assumed to be smaller than the scale of the inhomogeneities and is neglected 
unless noted otherwise. This is a case of multiplicative superposition and requires the 
application of a nonlinear process known as differential cepstral filtering (described later). 

Homomorphic systems are systems represented by algebraically linear transformation 
between input and output vector spaces [Oppenheim, 1975]. Use of the term "homomorphic" 
was motivated by the algebraic definition of a homomorphic mapping between vector spaces 
[Oppenheim, 1965]. Homomorphic filtering has been successfully applied to separating signals 
that have been combined through multiplication and convolution. 

TO f) 
In our application, we are given the multiplicative input V(r)—     '    and wish 

Tz(r,r,) 
vp(r f.) 

to apply the nonlinear homomorphic filtering technique to remove the factor —.     '   . The 
^(r,f,) 

transformation that converts this multiplicative relationship to an additive relationship is the 
logarithmic operator, since \og(ab) = log« + logo. A linear filter applied to the spectrum of 

log V(r) 
¥(r,f,) 

4"'(r,r,.). 
log|F(r)| + log 

y(r,f,.) 

¥'(!■,?,) 
+ l< arg[F(r)] + arg + 2nk k = 0,1,2,. 

(9.1) 

^(r f) 
is sought to isolate V{r) from V(r)—   ' ;   . The spectrum of Eq. (9.1) is known as the 

cepstrum (pronounced "kep-strum") [Bogert, et al, 1963]. For most objects of practical interest, 
numerical computation of Eq. (9.1) produces a phase term that is wrapped between 0 and 2n. 
This phase ambiguity leads to artifacts in the cepstrum that complicate the filtering process. To 
remove these artifacts, phase unwrapping techniques in one-dimensional problems have been 
introduced [Tribolet, 1977]; however, two-dimensional phase unwrapping remains a formidable 
problem [Seivier, et al, 1985]. 

A particular transformation that avoids the phase wrapping problem mentioned above is 
found by computing the derivative of the logarithm of the function [Polydoros, et al, 1981]. The 
essential point is that the mathematical equivalent to the derivative of the logarithm 
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Sx 
V(x,y) 8 s ^yJi) 

V{x,y) 
^(x,y,(t>i) 

■ + 
V(x,y) VJx^Ji) 

(9.2) 

does not include the logarithmic operator in its definition and therefore avoids the phase 
ambiguity shown in Eq. (9.1). 

The spectrum of Eq. (9.2) is known as the differential cepstrum and has been discussed in 
one dimension [Polydoros, et al, 1981], two dimensions [Raghuramireddy, et al, Oct. 1985], and 
multiple dimensions [Raghuramireddy, et al, Dec. 1985]. Raghuramireddy and Unbehauen [Oct. 
1985] define the two-dimensional differential cepstrum as the spectrum of 

5_ 

Sx 
V(x,y) ¥(*,M-) + ■ 

5y 
V(x,y) 

_^M) 
(9.3) 

and comment that if one desires only to avoid the phase ambiguity one can define the differential 
cepstrum as the spectrum of Eq. (9.2). To avoid the phase ambiguity and to simplify the inverse 
transformation, we define the two-dimensional differential cepstrum dc{fx,fy,^i) as the 

Fourier transform of Eq. (9.2) 

S_ 
ro °° Sx 

dc{fxJy,(f>i)= \ J-r 
''V(x,;M,). 

V(x,y) V(x,yJi) 

-i{24xX+2*fyy]dxdy_ (9A) 

Equation (9.4) can be evaluated by using properties of Fourier transforms [Bracewell, 1965] 
where 

S_ 

Sx 
V(x,y) V{x,y,<!>i) 

oo   oo 

J ]2nifsHfx,fy^
n24'"24^dfxdfy      (9.5) 

and 
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?'(/„/,,♦,)- I \nx,y)-l Tfoj/.fo)     -i [2nfxx+2nfyy] 
dxdy . (9.6) 

A regularization procedure is used in the computation of Eq. (9.4) because Eq. (9.2) is ill- 
¥(r,f,) 

conditioned. Specifically, zero values of V(r)- cause the derivative of the log shown in 
nr,f,) 

Eq. (9.2) to approach infinity. The regularization procedure, also known as Wiener filtering, 
modifies Eq. (9.2) by first multiplying both the numerator and denominator by the complex 

conjugate of V(r) ' 
¥ (r,r;) 

8_ 
&x 

V(x,y) V(x,y^i) V(x,y) ¥(*,:M>,-) 

V(x,y) V(x,y) 

(9.7) 

where * denotes complex conjugate. Then, a small regularization parameter 8 is added to the 
denominator yielding the regularized version of Eq. (9.2) 

8_ 
8x ''V(*,v,<j>(-) 'V(x,*4>,) 

(9.8) 

+ 5 

V^y)-rt 

The regularization parameter 8 is chosen to be a small fraction of the maximum of 
2 

—^X,y,(^^   . The differential cepstrum is found to be insensitive to a wide range of 
¥'(x,;y,4>«) 

values for 8. 
A linear filter L(fx,fy) is chosen to pass those frequency components associated with 

n*,yAi) ;+u 8 f(x,M,) /y(x,^,) 
i, 

5x and to reject those associated with Inversion of the 

transformation requires the filtered differential cepstrum to be inverse Fourier transformed, 
integrated, and exponentiated. This inversion produces an estimate for V(x,y), due to the 
effects of L(fx ,fy), and is written succinctly as 
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r"W,ß) = exp[ J   J ^dc(fx,fy,^)L(fx,fy)e
+i[2nfxX+27fyy]dfxdfy]    .       (9.9) 

-oo —oo  *->U Jx 

Successful image reconstruction depends on how well the spectra of ^— —— and 
V(x,y,<Pi) 

iL \x>y>rU   /—\x>y><Pi)  separate within the differential cepstral domain. Our assumption 
&Vl(x,y,fr)/ ^'(x,y,^) 

^(x y 6) 
is that as the scattering strength increases, —   '-"f"  internal to the object becomes 

^ (x>y,<Pi) 
increasingly oscillatory (that is, noise-like) in all directions, but it necessarily retains a 
characteristic correlation length (that is, periodicity) proportional to the effective wavelength in 

the medium. In such cases, the spectrum of .v   J Yl   /    , would manifest itself 

within a distinct annular ring in the differential cepstrum. Later, in Section 10, we use an ad-hoc 
procedure to choose L(fx,fy). A more automated procedure to choose  L(fx,fy) might be 

devised given knowledge of the mean permittivity within the object. 

10.      DIFFERENTIAL CEPSTRAL FILTERING APPLIED TO EXACT V— 

W(r r) 
In this section, we apply differential cepstral filtering to V(r)—: ' '    for the various 

¥ (r,f;) 

cylinders shown in Figure 23, under plane wave illumination at 10 GHz. The exact field value 
was computed for each cylinder according to Eqs. (6.13), (6.14), and (6.15). Input 

(v(x)    'r'r'') ) to the nonlinear filter, in each case, is pristine data, free from the convolutional 
V(r,r,) 

effects introduced by limited Fourier data. 

Figure 44 shows the magnitude of V(r) '    for obj_l.1/1.03. The radii of the inner 

and outer cylinders are clearly visible (the region outside the cylinder is black in Figure 44 since 
^Ffr ?•) 

V(r) is zero in free space). Note that the multiplicative factor     v ' '    produces the non- 
¥ (r,r,) 

uniform structure shown in Figure 44. Figures 45 and 46 show the magnitude of the differential 

cepstrum of V(r) '    and of V(r), respectively, for obj_l.1/1.03. After low-pass filtering 
^'(r.r,-) 
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Figure 44 Exact computation of for obj_l.l/1.03 at 10 GHz. Inner radius 3.6 

cm, outer radius 9.9 cm, Field-of-view 64x64 cm^. 
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Figure 45   Magnitude of the differential cepstrum of — for obj_l.1/1.03. 
'■i 
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Figure 46 Magnitude of the differential cepstrum of V for obj_l.l/1.03. 
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Figure 47 Magnitude of the reconstructed image of V after low pass filtering in the 
differential cepstral domain of obj_l.1/1.03. Field-of-view 64x64 cm2. 
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in the differential cepstrum of V(r)—. , integrating, and exponentiating, the magnitude of 

the reconstructed image is shown in Figure 47. Figures 48 through 51 show a similar series of 
plots for obj_l.03/1.1. 

¥0 ?•) 
Isolating V(r) from V(r)—     '   , in these examples, is much like the problem of 

*F(r r) 
finding the spatial window function V(r) given weighted data V(r)—.   ' '   . The reconstructed 

^ (r.f,-) 
images in Figures 47 and 51 reveal good estimates of the data window in each case. 

In Figure 52, the outer diameter of the homogeneous cylinder obj_4/4 is not clearly 
¥0 r) 

defined. Figures 53 and 54 show the magnitude of the differential cepstrum of V(r)—     ' 
^'(r.r,-) 

and V(r), respectively, for obj_4/4. The field within the dielectric cylinder is focused in some 
regions and is quite small in others. The data in Figure 52 could have been generated by some 

other P(r) Ty?1';  such that V(r) * V'{r) and     ) ' lJ *     ; ' lJ . Therefore, the inverse 

problem of finding V(r) cannot have a unique solution. Nevertheless, after low-pass filtering in 
^(r f ) 

the differential cepstral domain of V(r)—.     '   , integrating, and exponentiating, the 

reconstructed image of V(r) is shown in Figure 55. 
A sequence of similar plots is shown for obj_4/2 and obj_2/4 in Figures 56 through 63. 

Although a unique reconstruction of V(r) cannot be guaranteed in each case, the preceding 
examples do recover a good estimate of the spatial window function. 
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Figure 48 Exact computation of for obj_l.03/1.1 at 10 GHz. Inner radius 3.6 

cm, outer radius 9.9 cm, Field-of-view 64x64 cm^. 
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Figure 49 Magnitude of the differential cepstrum of for obj_l .03/1.1. 
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Figure 50 Magnitude of the differential cepstrum of V for obj_l.03/1.1. 
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Figure 51 Magnitude of the reconstructed image of V after low pass filtering in the 
differential cepstral domain of obj_l .03/1.1. Field-of-view 64x64 cm2. 
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Figure 52 Exact computation of 
PF 

for obj_4/4 at 10 GHz. Inner radius 3.6 cm, 

outer radius 9.9 cm, Field-of-view 64x64 cm^. 
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Figure 53 Magnitude of the differential cepstrum of for obj_4/4. 
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Figure 54 Magnitude of the differential cepstrum of V for obj_4/4. 
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Figure 55 Magnitude of the reconstructed image of V after low pass filtering in the 
differential cepstral domain of obj_4/4. Field-of-view 64x64 cm^. 
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Figure 56 Exact computation of 
PF 

for obj_4/2 at 10 GHz. Inner radius 3.6 cm, 

outer radius 9.9 cm, Field-of-view 64x64 cm^. 
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Figure 57 Magnitude of the differential cepstrum of for obj_4/2. 
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Figure 58 Magnitude of the differential cepstrum of V for obj_4/2. 
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Figure 59 Magnitude of the reconstructed image of V after low pass filtering in the 
differential cepstral domain of obj_4/2. Field-of-view 64x64 cm2. 
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Figure 60 Exact computation of 
PF 
Mf. 

for obj_2/4 at 10 GHz. Inner radius 3.6 cm, 

outer radius 9.9 cm, Field-of-view 64x64 cm^. 
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Figure 61 Magnitude of the differential cepstrum of for obj_2/4. 
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Figure 62 Magnitude of the differential cepstrum of V for obj_2/4. 
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Figure 63 Magnitude of the reconstructed image of V after low pass filtering in the 
differential cepstral domain of obj_2/4. Field-of-view 64x64 cm2. 
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11.      DIFFERENTIAL CEPSTRAL FILTERING APPLIED TO SINGLE-VIEW 

BACKPROPAGATED V—**hsv 
\Tjl ■»" 

In this section, the differential cepstral filtering technique is applied to single-view 
Tfr f) 

backpropagated images of V(r)—      '   **hsv(r,ri) for the five concentric cylinders shown in 
^'(r.f,-) 

Figure 23. All cylinders are illuminated with a 10 GHz plane wave. 
Figure 64 shows the magnitude of the single-view backpropagated image for 

obj_l. 1/1.03. Comparing it to Figure 44, we see that the point spread function hsv (r, r;-) has a 
dramatic effect on the backpropagated image shown in Figure 64. The image extends well 
beyond the cylinder boundary due to the side lobes associated with /z5V(r,r;). The magnitude of 

vj>(r f.) 
the differential cepstrum of V(r)—^-LlL**hsv(r,ri) for obj_l.1/1.03 is shown in Figure 65. 

T'(r,f;) 
The reconstructed image after low-pass filtering in the differential cepstrum of 

V(r)—v ' lJ **/z.v(r,f.-), integration, and exponentiation is shown in Figure 66. The 
4"(r,?/) 

combination of 15 equally spaced filtered images is displayed in Figure 67; to speed the 
computation, the data were thinned by taking one point of each four. Figures 68 through 71 
show a similar set of plots for obj_l .03/1.1. 

Results for the more strongly scattering objects (obj_4/4, obj_4/2, and obj_2/4) are shown 
in Figures 72 through 83. For each single-view backpropagated image, a low-pass filter was 
applied in the differential cepstral domain. Although the reconstructed images for obj_l.l/1.03, 
obj_l.03/1.1, and obj_4/2 bear some resemblance to their original scattering potentials, the 
results for obj_4/4 and obj_2/4 show that a simple low-pass filter in the differential cepstral 
domain is not always adequate for isolating V(r) from single-view backpropagated images of 

VU(r f.) 
V(r)—      '   **hsv(r,fi) for strongly scattering objects. 
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Figure 64 Magnitude of single-view backpropagated image 

obj_l .1/1.03.  Field-of-view 64x64 cm2. 
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Figure 65 Magnitude of the differential cepstrum of —r**h for obj_l.1/1.03. 
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Figure 66 Magnitude of the reconstructed image of V after low pass filtering in the 
differential cepstral domain of obj_l.1/1.03. Field-of-view 64x64 cm^. 
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Figure 67 Magnitude of the image in Figure 66 averaged over 15 equally spaced 
views. Field-of-view 64x64 cm^. 
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Figure 68 Magnitude of single-view backpropagated image 

obj_l .03/1.1.  Field-of-view 64x64 m2. 
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'. Figure 69 Magnitude of the differential cepstrum of —T * *h for obj_l .03/1.1. 
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Figure 70 Magnitude of the reconstructed image of V after low pass filtering 
^differential cepstral domain of objj.03/1.1. Field-of-vtew 64x64 «A 
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Figure 71 Magnitude of the image in Figure 70 averaged over 15 equally spaced 
views. Field-of-view 64x64 cm2. 
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Figure 72 Magnitude of single-view backpropagated image 

Field-of-view 64x64 cm^. 

** h for obj_4/4. 
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Figure 73 Magnitude of the differential cepstrum of —j * *h for obj_4/4. 
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Figure 74 Magnitude of the reconstructed image of V after low pass filtering in the 
differential cepstral domain of obj_4/4. Field-of-view 64x64 cm2. 
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Figure 75 Magnitude of the image in Figure 74 averaged over 15 equally spaced 
views. Field-of-view 64x64 cm2. 
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Figure 76 Magnitude of single-view backpropagated image I —r * *h J for obj_4/2. 

Field-of-view 64x64 cm^. 
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Figure 77 Magnitude of the differential cepstrum of —r * *h for obj_4/2. 
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Figure 78 Magnitude of the reconstructed image of V after low pass filtering in the 
differential cepstral domain of obj_4/2. Field-of-view 64x64 cm^. 
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Figure 79 Magnitude of the image in Figure 78 averaged over 15 equally spaced 
views. Field-of-view 64x64 cm^. 
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Figure 80 Magnitude of single-view backpropagated image I —- * *h\ for obj_2/4. 

Field-of-view 64x64 cm^. 
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Figure 81 Magnitude of the differential cepstrum of —r * *h for obj_2/4. 
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Figure 82 Magnitude of the reconstructed image of V after low pass filtering in the 
differential cepstral domain of obj_2/4. Field-of-view 64x64 cm^. 
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Figure 83 Magnitude of the image in Figure 82 averaged over 15 equally spaced 
views. Field-of-view 64x64 cm^. 
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12.      DIFFERENTIAL CEPSTRAL FILTERING APPLIED TO SINGLE-VIEW 

BACKPROPAGATED V— USING A PRIORI KNOWLEDGE OF THE 
\X)l 

OBJECT'S SUPPORT 

In this section, the differential cepstral filtering routine is applied to the single-view 
backpropagated images introduced in Section 11; however, a priori information of the object's 
support is used. For each image, data outside the physical support of the object are zeroed. The 
process of eliminating data outside the object support is referred to as truncation. Lastly, we 
consider the effects of random noise on the backpropagated image of obj_4/2 and show a single- 
view filtered reconstruction of the scattering potential in the presence of this noise. 

Figure 84 displays the truncated magnitude of the single-view backpropagated image of 
obj_l .1/1.03. The magnitude of its differential cepstrum is shown in Figure 85. Using a low- 
pass filter in the differential cepstral domain, we recover an estimate of V as shown in Figure 
86. The filtered single-view image of Figure 86 is superior to the unfiltered image shown in 
Figure 64. Filtered estimates of V obtained from 15 equally spaced views are averaged in 
Figure 87. This post-filtering average produces a more symmetric estimate of the scattering 
potential. 

The magnitude of the truncated single-view backpropagated image of obj_1.03/l .1 is 
shown in Figure 88, and its differential cepstrum is shown in Figure 89. After low-pass filtering 
in the differential cepstral domain, the reconstructed image is shown in Figure 90, where the 
estimate of V is superior to the unfiltered single-view backpropagated image shown in Figure 
68. Figure 91 shows the magnitude of the reconstructed image averaged over 15 equally spaced 
illumination directions. The image of Figure 91 agrees qualitatively with the original scattering 
potential. 

Similar plots are shown for obj_4/4, obj_4/2, and obj_2/4 in Figures 92 through 103 for 
these cases. The magnitudes of the reconstructed images all appear similar. The scattered far- 
field data from these strongly scattering objects are in fact quite different as illustrated in 
Appendix C. Features within these more strongly scattering objects are not well resolved due to 
the limited Fourier data available. Although the image of obj_4/2, shown in Figure 98, agrees 
qualitatively with the original scattering potential, a consistent solution is not obtained for the 
other two objects as illustrated in Figures 94 and 102. 

Since measured data invariably contain some level of noise, we examine its effect on the 
differential cepstral filtering technique. A random component (uniform distribution) was added 
to both the real and imaginary parts of the simulated scattered field for obj_4/2. In Figures 104 
through 107, the magnitudes of the single-view backpropagated images are shown for signal to 
noise (S/N) ratios of 20, 15, 10, and 5 dB, respectively. Figure 108 shows the magnitude of the 

differential cepstrum of V—r * *h for obj_4/2 with S/N=20 dB. A priori knowledge of the 

object support was incorporated in generating Figure 108. Finally, the magnitude of the 
reconstructed image of V, after low-pass filtering in the differential cepstral domain, is shown in 
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Figure 84 Magnitude of single-view backpropagated image 
PF ** h for 

obj_l.l/1.03 using a priori knowledge of object support. Field-of-view 64x64 cm^. 
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Figure 85 Magnitude of the differential cepstrum of —r**h for obj_l.l/1.03 using 

a priori knowledge of object support. 
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Figure 86 Magnitude of the reconstructed image of V after low pass filtering in the 
differential cepstral domain of obj_l.1/1.03 (using a priori knowledge of object 
support). Field-of-view 64x64 cm2. 
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Figure 87 Magnitude of the image in Figure 86 averaged over 15 equally spaced 
views. Field-of-view 64x64 cm2. 
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Figure 88 Magnitude of single-view backpropagated image 
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obj_l.03/1.1 using a priori knowledge of object support. Field-of-view 64x64 cm^. 
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Figure 89 Magnitude of the differential cepstrum of —- * *h for obj_l .03/1.1 using 

a priori knowledge of object support. 
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Figure 90 Magnitude of the reconstructed image of V after low pass filtering in the 
differential cepstral domain of obj_l .03/1.1 (using a priori knowledge of object 
support). Field-of-view 64x64 cm2. 

Figure 91 Magnitude of the image in Figure 90 averaged over 15 equally spaced 
views. Field-of-view 64x64 cm2. 
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Figure 92 Magnitude of single-view backpropagated image   —- * *h\ for obj_4/4 

using a priori knowledge of object support. Field-of-view 64x64 cm2. 
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Figure 93 Magnitude of the differential cepstrum of —- * *h for obi 4/4 using a 

priori knowledge of object support. 
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Figure 94 Magnitude of the reconstructed image of V after low pass filtering in the 
differential cepstral domain of obj_4/4 (using a priori knowledge of object 
support). Field-of-view 64x64 cm^. 

Figure 95 Magnitude of the image in Figure 94 averaged over 15 equally spaced 
views. Field-of-view 64x64 cm^. 
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Figure 96 Magnitude of single-view backpropagated image h\ forobj_4/2 

using a priori knowledge of object support. Field-of-view 64x64 cm2. 
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Figure 97 Magnitude of the differential cepstrum of —-**h for obj_4/2 using a 

priori knowledge of object support. 
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Figure 98 Magnitude of the reconstructed image of V after low pass filtering in the 
differential cepstral domain of obj_4/2 (using a priori knowledge of object 
support). Field-of-view 64x64 cm^. 
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Figure 99 Magnitude of the image in Figure 98 averaged over 15 equally spaced 
views. Field-of-view 64x64 cm^. 
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Figure 100 Magnitude of single-view backpropagated image **; h\ forobj_2/4 

using a priori knowledge of object support. Field-of-view 64x64 cm2. 
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Figure 101 Magnitude of the differential cepstrum of —r * *h for obj_2/4 using a 

priori knowledge of object support. 
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Figure 102 Magnitude of the reconstructed image of V after low pass filtering in the 
differential cepstral domain of obj_2/4 (using a priori knowledge of object 
support). Field-of-view 64x64 cm2. 
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Figure 103 Magnitude of the image in Figure 102 averaged over 15 equally spaced 
views. Field-of-view 64x64 cm2. 
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PF Figure 104 Magnitude of single-view backpropagated image I —i- * *h) for obj_4/2 

with S/N=20 dB. Field-of-view 64x64 cm2. 
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Figure 105 Magnitude of single-view backpropagated image 

with S/N=15 dB. Field-of-view 64x64 cm2. 
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Figure 106 Magnitude of single-view backpropagated image 

with S/N=10 dB. Field-of-view 64x64 cm2. 
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Figure 107 Magnitude of single-view backpropagated image 

with S/N=5 dB. Field-of-view 64x64 cm2. 

**i h\ forobj_4/2 
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Figure 108 Magnitude of the differential cepstrum 

250 

Of ** h for obj_4/2 using a priori knowledge of object support, S/N=20 dB. 
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Figure 109 Magnitude of the reconstructed image of V after low pass filtering in the 
differential cepstral domain of obj_4/2, with S/N=20 dB (using a priori 
knowledge of object support). Field-of-view 64x64 cm^. 
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Figure 109. Although somewhat inferior to the noise-free case (Figure 98), the reconstruction in 
Figure 109 clearly shows the boundaries of obj_4/2. The algorithm is sensitive to noise because 
the various processing steps involved are nonlinear. As the differential cepstral filtering 
technique evolves, a more comprehensive noise analysis may be warranted. 
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13.      DIFFERENTIAL CEPSTRAL FILTER APPLIED TO MEASURED DATA 

Data were collected at Rome Laboratory's Ipswich, MA measurement facility and then 
processed. A homogeneous square dielectric cylinder was illuminated by a 10 GHz radar using a 
separated transmitter and receiver in a bistatic arrangement. The square cylinder was constructed 
of Styrofoam (polystyrene) and had a cross section of 13.6 cm by 13.6 cm. The height of the 
cylinder extended beyond the transmitter beam width and was considered infinite. For each of 
six fixed plane wave illumination directions, scattered far fields were collected every 1° for 
bistatic angles 0° to 180°. 

The scattered fields map onto semi-circles in Fourier space and can be backpropagated 
into image space as described in Section 7. Figures 110 through 115 show the magnitudes of the 
backpropagated fields for the illumination directions 0°, 60°, 120°, 180°, 240°, and 300°, 
respectively. 

Combinations of backpropagated fields from multiple views reveal an image that is 
equivalent to a Born reconstruction. In Figure 116, backpropagated fields are combined using 
the three different illumination directions 0°, 60°, and 120°. The magnitude of the image 
provides a crude estimate of the original object. As more views are added, the reconstruction 
improves. Figure 117 shows the magnitude of the equivalent Born reconstruction using the six 
views 0°, 60°, 120°, 180°, 240°, and 300°. 

Only six views of the square cylinder were available due to time constraints on the 
measurement system. However, symmetry may be used to provide more Fourier data, which is 
valid only for a homogeneous case. That is, the data collected using a 0° illumination direction 
can be used to imitate data collected using a 90° illumination direction. Data collected at 60° can 
be used to imitate data collected at 150°, and so on. Figure 118 shows the magnitude of the 
equivalent Born reconstruction using twelve views assembled from six views actually measured 
and six views found through symmetry. Periodic structure within the image is an artifact that 
results from the field. A low-pass filter applied in the differential cepstrum of the twelve-view 
image produces Figure 119. To within the effects of low-pass filtering, Figure 119 shows a more 
uniform variation of permittivity that qualitatively agrees with the original object. 
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Figure 110 Magnitude of the single-view backpropagated image using bistatic angles 
0° to 180° and incident angle 0°. Field-of-view 64x64 cm2. 
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Figure 111 Magnitude of the single-view backpropagated image using bistatic angles 
, 0° to 180° and incident angle 60°. Field-of-view 64x64 cm2. 
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Figure 112 Magnitude of the single-view backpropagated image using bistatic angles 
0° to 180° and incident angle 120°. Field-of-view 64x64 cm2. 
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Figure 113 Magnitude of the single-view backpropagated image using bistatic angles 
0° to 180° and incident angle 180°. Field-of-view 64x64 cm2. 
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Figure 114 Magnitude of the single-view backpropagated image using bistatic angles 
0° to 180° and incident angle 240°. Field-of-view 64x64 cm2. 
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Figure 115 Magnitude of the single-view backpropagated image using bistatic angles 
0° to 180° and incident angle 300°. Field-of-view 64x64 cm2. 
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Figure 116 Magnitude of the equivalent Born reconstruction using three views 
(0°, 60°, 120°). Field-of-view 64x64 cm2. 

250 

200 

150 

100 

Figure 117 Magnitude of the equivalent Born reconstruction using six views 
(0°, 60°, 120°, 180°, 240°, 300°). Field-of-view 64x64 cm2. 
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Figure 118 Magnitude of the equivalent Born reconstruction using twelve views 
(0°, 30°, 60°, 90°, 120°, 150°, 180°, 210°, 240°, 270°, 300°, 330°). 
Field-of-view 64x64 cm^. 
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Figure 119 Magnitude of the resultant image when the differential cepstral filter is 
applied to the twelve-view reconstruction. Field-of-view 64x64 cm^. 
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14.      CONCLUSIONS 

The single-view backpropagated image generated from a strongly scattering object was 
shown to be the product of the scattering potential and the total field. A differential cepstral filter 
was then used to isolate an estimate of the scattering potential from the image since simple linear 
filtering is inappropriate for separating product functions. Sets of filtered single-view images 
were combined to better identify the scattering. This report presents the first application of this 
nonlinear filtering technique to single-view backpropagated images from two-dimensional 
strongly scattering objects, although McGahan [1992] successfully applied homomorphic 
filtering to one-dimensional slices of backpropagated images for both simulated and measured 
data. 

Weak scattering approximations such as the Born or Rytov methods are well known to be 

inappropriate for objects that possess multiple scattering. The factor —.  ' '    in the effective 
¥'(r,ff) 

scattering potential of Eq. (7.15) complicates our interpretation of the true scattering potential by 
modulating the image of V(r). In Sections 5 and 6, several examples were shown to illustrate 
the complexity of the internal field for strongly scattering concentric cylinders. 

The inverse differential cepstral transform was simplified by defining the differential 
cepstrum as the spectrum of the derivative with respect to x of the logarithm of the function. As 
discussed in Section 9, this allows one to use integration with respect to x and exponentiation for 
the inverse transformation. Phase-wrapping artifacts due to use of the logarithm are, thereby, 
avoided. Of course, the differential cepstrum could have been defined using a derivative along 
some other arbitrary direction, or in both the x andy directions. The benefits of such options 
remain to be explored. 

A promising reconstruction is shown in Figure 98. In this figure, good qualitative 

er -1 a = 41 and is agreement is found with the profile of obj_4/2. This example represents kQ 

a strong scatterer by our definition that k0 ^s~r -1 \a < n for those objects that satisfy the Born 

approximation. A priori information concerning the object's size was used in this reconstruction. 
Only backpropagated data within a region loosely bounding the object's domain D were 
processed, the rest were set to zero. In this way, unwanted cepstral components are removed and 
better separation of the scattering potential and total field is possible. 

The fact that Figure 102 shows poor qualitative agreement with the complementary object 
obj_2/4 may imply that more care is needed in excising the field factor in the differential cepstral 
domain. A simple low-pass filter was used throughout this report, rather than a well defined, but 
generic, notch filter. 

Other researchers have tried to image strongly scattering objects and have achieved 
varying degrees of success. Duchene, et al, [1985] simply performed a Born inversion on strong 
scatterers even though there was no clear relationship between the processed image and the 
scattering potential. Consequently, the reconstructed images showed poor agreement with the 
original scattering potentials. 
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Feinberg and Rebane [1994] recently proposed a technique that involves time gating the 
received signal so that multiply scattered components (those that arrive later in time due to the 
increased path length) are effectively truncated. This particular imaging method uses visible 
light as the source and measures an attenuation profile for the intervening medium. In diffraction 
tomography, we cannot, however, exploit a similar procedure since the scattered field is 
characterized by a diffraction phenomenon rather than straight line propagation. 

One difficulty with our proposed method is that Fourier data are limited to an offset circle 
in 2-D Fourier space according to Eq. (7.11) when a fixed illumination direction is used. Higher 
spatial frequencies are filtered out by the limited Fourier domain that is accessible. As a result, 
fine detail in the reconstructed images of more strongly scattering structures with higher 
permittivities is not resolved. One might argue that this selective filtering improves the 
obtainable image; however, the point spread function (PSF) in the backpropagated image 
becomes more pronounced. In this case, the convolution term /25V(r,f;) in Eq. (7.20) cannot be 
neglected and the differential cepstral filtering routine may need modification to accommodate 
the PSF. The first sidelobe of the PSF is approximately 8 dB below the peak value and will limit 
the final image contrast by the same amount. 

In principle, one would like to reduce the smearing effect of the PSF (that is, make it 
more like an ideal delta function) by using multiple illumination directions or multiple 

T(r ?•) 
wavelengths. However, V(r)—     '    varies strongly with both fz- and k0 although the 

dependence on k0 is not shown explicitly within the arguments since a single wavenumber was 
assumed throughout this report. Therefore, any appreciable change in these values provides 
Fourier data for a very different effective scattering potential. 

15.       RECOMMENDATIONS 

Differential cepstral filtering applied to single-view backpropagated images of strong 
scatterers is a developing technique. The purpose of this report is to demonstrate the validity and 
applicability of this technique to strong scatterers. In Section 10, a simple low-pass filter was 

T(r f) 
used to filter the differential cepstrum of exact V(r)—   '       for several objects. A result 

Y'Or,?,-) 
consistent with the data was found, in each case, demonstrating the validity of the method. 

However, backpropagated images of the more strongly scattering objects were found to 
be convolved with a point spread function due to limited Fourier data. The PSF blurred the 
higher spatial frequencies associated with an increased relative permittivity. To mitigate the 
effects of the PSF, it is recommended that a superresolution technique be used for frequency 

^(r ?•) 
space extrapolation. This technique should provide a better estimate of V(r)—.   ' '    for strong 

¥ (r,f,) 

scatterers. 

93 



The concurrent use of multiple frequencies does not readily lend itself to improving the 
PSF. However, use of two, or more, frequencies may help separate components of V(r) from 

¥0 ?■") 
—.     '    in the differential cepstral domain. If V(r) is nondispersive (that is, V(r) does not 

vary with k0), cepstral components of V(r) should not change when a new frequency is 

introduced. The cepstral components of — will differ due to the dependence on k0. 

Use of the two frequency approach may lead to the design of more effective filters in the 
differential cepstral domain. 

Combinations of post-filtered images using multiple frequencies may improve estimates 

of V(r). In this case, the frequency dependent factor —      ° '    is theoretically removed 
y'Mof,-) 

through proper filtering at each frequency. 
The differential cepstral filtering technique represents a novel application of 

homomorphic signal processing to the inverse problem for strong scatterers. Perhaps, as the 
technique matures, many of the present challenges can be overcome. The most exciting aspect of 
this effort will be the realization of the potential benefits of the technique in the areas of target 
identification, medical imaging, nondestructive evaluation, and geophysical imaging. 
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APPENDIX A. FAR-FIELD APPROXIMATION 

Given the source (r',(/>') and observation {r,</)) coordinates, we wish to approximate 

|r - r'j for the case |r|»|r'|. Although the solution is given in many textbooks including 
[Balanis, 1982, p. 114] and [Van Bladel, 1985, p. 214], its derivation will be shown here to 
provide a more complete understanding of the approximation. 

Using the law of cosines applied to the triangle formed by sides r,r' and r - r', one may 
write 

\r-r'\ = [r2-2rr'cos(0-0') + r'2f2 (A.l) 

Recall the following binomial expansion [Beyer, 1981, p. 347] 

(x + yf =xn + nxn~ly + !*£z}±x
n-2

y
2+...      (y

2 < x
2) (A.2) 

Letting x = r  , v = -2rr' cos(^ - <p') + r'  , and |r|»|r'| the far-field approximation to (A. 1) 
becomes 

\r-r'\ = r- r' cos(<b -(b') 1        ' W   V> (A.3) 
= r-r' f 

Only the first two terms were considered significant in the expansion since the rest degrades as 

r~  and faster. 
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APPENDIX B. 2-D INVERSE FOURIER TRANSFORM 

Although the inverse Fourier transform is defined in many texts, for example [Bracewell, 
1965], and [Brigham, 1988], its derivation is not. In this appendix, we briefly review the 
derivation of the inverse Fourier transform for a function of two variables. 

Given the forward Fourier transform 

t2 =-00 t\ =-00 

(B.l) 

we desire to solve for x{tx,t2)- First> multiply both sides of (B.l) by eiaiTlel0>2T2 and integrate 
over cox and co2 to obtain 

oo oo 

j        \X{(Ox,(O2)ei<o^ei0}2r2dcDxdcD2 = 
(2)2 =-oo («1 =-00 

oo oo 

J  J 
<i>2=-ooffi>j=-a 

|       \x{tx,t2)e-ia^e-iC0^dtxdt2 eico^eic0272dcoxdco2. 
t2 =-oo t\ =-oo 

(B.2) 

Next, swap the order of integration in Eq. (B.2) to get 

oo oo 

{        \X{cox,(o2)eico^ei(0^dcoxdG>2 = 
C02=-CO(0X=- 

00 00 

J J 
t2 =-oo /] =-oo 

oo oo 

\        \x(tx,t2)e-ico^e-ico*2eia>^eia>^d(oxdco2 dtxdt2 

0)2=-<X> 6JJ=-oo 

(B.3) 

The function x(tx,t2) may be removed from the innermost two integrals in the right hand side of 
Eq. (B.3) since it does not vary with cox or co2. In this case, we write 
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oo oo 

(»2=-oo(Wi=-00 

?2=-<»rj=-oo 

00 00 

<W2=-°oi»l=-co 

(B.4) 

Finally, using the following integral representation for the delta function [Papoulis, 1968, p. 99] 

00        00 

<?(*Wi,r2-'2) = -\    I        \eia^-tl)eia^2-t2)da)lda)7 

£y2=-c0«l=-°0 

(B.5) 

for the bracketed term in Eq. (B.4), we write the inverse 2-D Fourier transform 

00       00 

-L     f        \x(cox,co2)eico^ei(°^dcoldcD2=x{rx,t2). 
An       J        J  . 

=—0001 =-00 co2=-<x>a)\ 

(B.6) 
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APPENDIX C. SIMULATED SCATTERED FAR-FIELDS 

Figures C.l through C.3 illustrate the magnitude and phase of the simulated scattered far- 
fields for obj_4/4, obj_4/2, and obj_2/4. For these strongly scattering objects, we note that the 
information in the scattered field is indeed quite different for each object considered. The 
scattered far-fields are computed from the exact solution outlined in Section 6. 
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Figure C. 1    Magnitude and Phase (simulated) of the scattered far-field from 
obj_4/4. 
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Figure C.2    Magnitude and Phase (simulated) of the scattered far-field from 
obj_4/2. 

105 



0.1 

0.01 

0.001 
-100 

CO 
tr 

-50 

obj_2/4 

50     100     150 

Angle (Deg) 

50     100     150 

Angle (Deg) 

200     250    300 

200     250    300 

Figure C.3     Magnitude and Phase (simulated) of the scattered far-field from 
obj_2/4. 
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